Память

Быстрое повышение быстродействия процессоров и переход на многозадачные операционные системы существенно поднимают требования и к другим компонентам компьютера. Важнейшим из них является память.

Основные виды памяти

Очень важным элементом компьютера является оперативная память. Именно из нее процессор берет программы и исходные данные для обработки, в нее он записывает полученные результаты. Название “оперативная” эта память получила потому, что она работает очень быстро, однако содержащиеся в ней данные сохраняются только пока компьютер включен. Часто для оперативной памяти используют обозначение RAM (random access memory, то есть память с произвольным доступом).

Каждый элемент памяти определяется своим адресом. Элементы памяти объединяются в корпусе микросхемы, а последние, в свою очередь, размещаются на специальных небольших печатных платах(модулях). Эти платы вставляются в специально предназначенные для них слоты на материнской плате так называемые банки (Banks). Под банком понимают один или несколько разъемов, объединенных в логическую единицу. Банк всегда должен быть полностью укомплектован одинаковыми элементами памяти. Неполное заполнение банка ведет к тому, что система перестает работать.

Основными характеристиками оперативной памяти являются:

Всю память с произвольным доступом(RAM) можно разделить на два типа: SRAM(статическая RAM) и DRAM(динамическая RAM).

SRAM - статическая оперативная память с малым временем доступа (от 15 до 25 нс), устанавливается для выполнения специальных задач, важнейшими из которых можно назвать применение в качестве кэш-памяти и памяти для параметров BIOS.

К первому поколению высокоскоростных DRAM главным образом относят:

  1. FPM(Fast Page Mode) - самая старая спецификация памяти ПК, реализовывалась в основном на DIP-корпусах и SIMM-модулях.
  2. EDO RAM (Extended Data Output RAM). В нее добавлен набор регистров-“защелок”, благодаря которым данные на выходе могут удерживаться даже в течение следующего запроса к микросхеме. EDO RAM выполнена в виде модулей SIMM и DIMM. Более высокими по сравнению с EDO RAM характеристиками, причем не только по чтению, но и по записи, обладают схемы BEDO RAM (Burst EDO RAM).
  3. SDRAM (Synchronous Dynamic RAM). Современная технология реализации оперативной памяти. Выполнена в виде модулей DIMM.
    Если EDO RAM не работает на частотах шины памяти свыше 66 МГц, то SDRAM доступны частоты 100, 133. Взависимости от этого различают следующие спецификации SDRAM: Дальнейшее развитие этих спецификаций вылилось в небольшие косметические изменения, например использование нестандартной частоты 166 МГц, а дальнейшее развитие выразилось в других технологиях.
  4. RDRAM(Rambus DRAM) - спецификация разработанная фирмой Rambus Inc.. Частота работы памяти равна 400 МГц, но за счет использования обеих границ сигнала достигается частота, эквивалентная 800 МГц.

Ко второму поколению высокоскоростных DRAM главным образом относят:

  1. ESDRAM(Enchanced SDRAM). Для преодоления некоторых проблем с задержкой сигнала, присущих стандартным DRAM-модулям, производители решили встроить небольшое количество SRAM в чип, т.е. создать на чипе кеш. Одним из таких решений, заслуживающих внимания, является ESDRAM от Ramtron International Corporation. ESDRAM - это по существу SDRAM плюс немного SRAM. При малой задержке и пакетной работе достигается частота до 200 МГц.
  2. DDR SDRAM(SDRAM II)(Double Date Rate SDRAM) является синхронной памятью, реализующей удвоенную скорость передачи данных по сравнению с SDRAM. Достигает удвоенной пропускной способности за счет работы на обеих границах тактового сигнала (на подъеме и на спаде), а SDRAM работает только на одной. DDR SDRAM не имеет полной совместимости с SDRAM, хотя использует такой же метод управления и стандартный 168-контактный разъем DIMM.
  3. SLDRAM(SynchLink DRAM). Стандарт является открытым, т.е. не требует дополнительной платы за лицензию на производство чипов, что позволяет снизить их стоимость. Технология использует обе границы тактового сигнала, работает на частоте до 400 МГц.
  4. Direct RDRAM - это высокоскоростная динамическая память с произвольным доступом, разработанная Rambus Inc.. Представляет собой интегрированную на ситемном уровне технологию, которая определяется требованиями подсистемы Direct Rambus.

    Сейчас наиболее часто используется память DDR SDRAM, хотя и технологии Rambus не сдают своих позиций.

    В первых поколениях ПК использовалась оперативная память в виде независимых микросхем. Затем, начиная с AT286, стали использоваться маленькие платы с напаянными на них микросхемами. Виды микросхем памяти:

    Виды модулей памяти:

Для ускорения доступа к оперативной памяти в современных быстродействующих компьютерах применяется специальная "сверхбыстрая"("сверхоперативная") память, которая называется кэш-памятью и является как бы буфером между очень быстрым процессором и достаточно медленной оперативной памятью. Ее начали использовать начиная с 486 компьютеров и сейчас используют во всех современных моделях ПК.

Кэш-памятью управляет специальное устройство — контроллер, который, анализируя выполняемую программу, пытается предвидеть, какие данные и команды вероятнее всего понадобятся в ближайшее время процессору, и подкачивает их в кэш-память. При этом возможны как "попадания", так и "промахи". В случае попадания, то есть, если в кэш подкачаны нужные данные, извлечение их из памяти происходит без задержки. Если же требуемая информация в кэше отсутствует, то процессор считывает её непосредственно из оперативной памяти. Соотношение числа попаданий и промахов определяет эффективность кэширования.

Современные микропроцессоры имеют встроенную кэш-память, так называемый кэш первого уровня (внутренняя кеш-память), которая обозначается L1(Level 1) и имеет размер порядка 64–128 Кбайт. Ее назначение — согласование скорости работы процессора и внешней кэш-памяти.
Кроме того, существует кэш второго уровня(внешняя кеш-память), которая обозначается L2(Level 2) и имеет ёмкость от 128 Кбайт до 256 Кбайт и выше.Главная задача внешней кэш-памяти — организовать обмен данными между процессором и памятью с наименьшим количеством тактов ожидания. В настоящее время существует три схемы размещения кэш L2:

Физически кэш-память обычно состоит из элементов SRAM с малым временем доступа (15-20 нс) и выполнена в DIP корпусах.

Постоянная память(ПЗУ, англ. ROM, Read Only Memory — память только для чтения) — энергонезависимая память, используется для хранения данных, которые никогда не потребуют изменения. Содержание памяти специальным образом “зашивается” в микросхеме BIOS при его изготовлении для постоянного хранения. Из ПЗУ можно только читать.

BIOS(Basic Input/Output System) – это базовая система ввода-вывода. BIOS представляет собой сложную систему, состоящую из большого количества утилит, предназначенных для автоматического распознавания установленного на компьютер оборудования, его настройки и проверки функционирования.
Подробнее о BIOS мы поговорим позднее.

Система BIOS неразрывно связана с СMOS RAM (CMOS -- Complementary Metal Oxide Semiconductor).

CMOS(полупостоянная память) - небольшой участок памяти для хранения параметров конфигурации компьютера, который регулируется с помощью утилиты CMOS Setup Utility. Обладает низким энергопотреблением. Содержимое CMOS-памяти не изменяется при выключении электропитания компьютера, поскольку для ее электропитания используется специальный аккумулятор.

Каждое устройство компьютера имеет свою собственную встроенную память различных видов. Наибольшее значение для производительности ПК имеет видеопамять

Видеопамять — разновидность оперативного ЗУ, в котором хранятся закодированные изображения. Это ЗУ организовано так, что его содержимое доступно сразу двум устройствам — процессору и дисплею. Поэтому изображение на экране меняется одновременно с обновлением видеоданных в памяти.

Скорость, с которой информация поступает на экран, и количество информации, которое выходит из видеоадаптера и передается на экран - все зависит от трех факторов:

Разрешение определяется количеством пикселов на линии и количеством самих линий. Поэтому на дисплее с разрешением 1024х768, типичном для систем, использующих ОС Windows, изображение формируется каждый раз при обновлении экрана из 786,432 пикселов информации.

Обычно частота обновления экрана имеет значение не менее 75Hz, или циклов в секунду. Следствием мерцания экрана является зрительное напряжение и усталость глаз при длительном наблюдении за изображением. Для уменьшения усталости глаз и улучшения эргономичности изображения значение частоты обновления экрана должно быть достаточно высоким, не менее 75 Hz.

Число допускающих воспроизведение цветов, или глубина цвета -- это десятичный эквивалент двоичного значения количества битов на пиксел. Так, 8 бит на пиксел эквивалентно 28 или 256 цветам, 16-битный цвет, часто называемый просто high-color, отображает более 65,000 цветов, а 24-битный цвет, также известный, как истинный или true color, может представить 16.7 миллионов цветов. 32-битный цвет с целью избежания путаницы обычно означает отображение истинного цвета с дополнительными 8 битами, которые используются для обеспечения 256 степеней прозрачности. Так, в 32-битном представлении каждый из 16.7 миллионов истинных цветов имеет дополнительные 256 степеней доступной прозрачности. Такие возможности представления цвета имеются только в системах высшего класса и графических рабочих станциях.

Ранее настольные компьютеры были оснащены в основном мониторами с диагональю экрана 14 дюймов. VGA разрешение 640х480 пикселов вполне и хорошо покрывало этот размер экрана. Как только размер среднего монитора увеличился до 15 дюймов, разрешение увеличилось до значения 800х600 пикселов. Так как компьютер все больше становится средством визуализации с постоянно улучшающейся графикой, а графический интерфейс пользователя (GUI) становится стандартом, пользователи хотят видеть больше информации на своих мониторах. Мониторы с диагональю 17 дюймов становятся стандартным оборудованием для систем на базе ОС Windows, и разрешение 1024х768 пикселов адекватно заполняет экран с таким размером. Некоторые пользователи используют разрешение 1280х1024 пикселов на 17 дюймовых мониторах.

Современной графической подсистеме для обеспечения разрешения 1024x768 требуется 1 Мегабайт памяти. Несмотря на то, что только три четверти этого объема памяти необходимо в действительности, графическая подсистема обычно хранит информацию о курсоре и ярлыках в буферной памяти дисплея (off-screen memory) для быстрого доступа. Пропускная способность памяти определяется соотношением того, как много мегабайт данных передаются в память и из нее за секунду времени. Типичное разрешение 1024х768, при 8-битной глубине представления цвета и частоте обновления экрана 75 Hz, требует пропускной способности памяти 1118 мегабайт в секунду. Добавление функций обработки 3D графики требует увеличения размера доступной памяти на борту видеоадаптера. В современных видеоакселераторах для систем на базе Windows типичен размер установленной памяти в 4 Мб. Дополнительная память сверх необходимой для создания изображения на экране используется для z-буфера и хранения текстур.

В качестве видеопамяти применяется довольно много видов динамической памяти. Существующие типы памяти, доступные производителям видеоадаптеров, перечислены в нижеследующей таблице.

Тип Свойства Резюме
3D RAM Встроенные вычислительные средства и кэш-память, реализованные на уровне чипа. Высокая оптимизация для использования при выполнении трехмерных операций. Технология рабочих станций для обработки 3D графики, которая обеспечивает таким платам, как Diamond Fire GL 4000 дополнительное увеличение производительности. Контроллер RealIMAGE обеспечивает продвижение этой технологии на рынок настольных компьютеров.
Burst EDO Дополнительный пакет регистров обеспечивает быстрый вывод строки из последовательных адресов. Долгое время ожидания, если следующий адрес не является соседним в последовательности.
CDRAM Предшественник 3D RAM со встроенным в микросхему кэшем. Работает с внешним контроллером кэш-памяти. Идеально приспособлен быть основой для текстурной памяти и может быть органичным дополнением памяти типа 3D RAM с ее высокой пропускной способностью, например, в адаптере Diamond Fire GL 4000. Контроллер RealIMAGE обеспечивает продвижение этой технологии на рынок настольных компьютеров.
DRAM Относится к группе промышленных стандартов. Дальнейшие совершенствования технологии DRAM основываются на низкой стоимости производства, но также произошло существенное увеличение пропускной способности. За два цикла данные считываются в и из памяти. На основе этой технологии производятся некоторые из самых распространенных типов памяти.
EDO DRAM Использует стандартный интерфейс DRAM, но передача данных в и из памяти происходит с более высокой скоростью (или на более высокой частоте). Улучшение производительности достигается за счет дополнительного внешнего чередования данных графическим контроллером (интерливинг). В зависимости от графического контроллера может иметь производительность на уровне более дорогой двухпортовой технологии памяти, такой, как VRAM, использующейся в графических контроллерах для систем на базе ОС Windows.
MDRAM Высокая пропускная способность, низкие задержки по времени, мелкоячеистость. Компания Tseng Labs разработала контроллер, который смог использовать все преимущества архитектуры этой памяти. В среде DOS были достигнуты отличные результаты, в среде Windows всего лишь удовлетворительные.
RDRAM Возможный претендент на широкое распространение и принятие в качестве стандарта на память с высокой производительностью. Поддерживается ограниченным числом графических контроллеров, но со временем ситуация может измениться.
SDRAM Производится по стандартам JEDEC, имеет большую производительность, чем DRAM. Чаще используется в качестве основной системной памяти, нежили в графических адаптерах.
SGRAM Производится по стандартам JEDEC, разновидность SDRAM, однопортовая. Производительность оптимизирована для графических операций, но при этом имеет характеристики, свойственные для высокоскоростной памяти, позволяющие использовать этот тип памяти для хранения текстур и z-буферизации. Снабжена уникальными свойствами, большими и лучшими, чем у SDRAM, обеспечивающих высокую скорость обработки графики. Идеально подходит для графических адаптеров с одним недорогим банком памяти, использующимся для 2D/3D графики и цифрового видео.
VRAM Технология двухпортовой памяти, которая все еще остается лучшим решением для создания буферов кадра с высокой производительностью. Не является дешевым решением, но для приложений, которым требуется разрешение 1280х1024 при истинном представлении цвета (True color), особенно с двойной буферизацией, это лучший из доступных выборов.
WRAM Высокоскоростная, двухпортовая технология памяти, используемая только двумя производителями видеоадаптеров - компаниями Matrox и Number Nine. Этот тип памяти изготавливает один производитель -- Samsung. По своему дизайну этот тип памяти аналогичен VRAM и RDRAM. Нестандартный тип памяти, требующий использования специальной технологии в контроллерах. Технология изготовления таких контроллеров запатентована, следовательно, не является общедоступной.